红外测温仪原理

楼主
红外测温仪原理
此文内容转载于www.bbww.net的PDF文档,原创作者未明。有知原创作者请通知我们更正。

红外线测温仪基础理论
1672 年,人们发现太阳光(白光)是由各种颜色的光复合而成,同时,牛顿做出了单色光在性质上比白色光更简单的著名结论。使用分光棱镜就把太阳光(白光)分解为红、橙、黄、绿、青、蓝、紫等各色单色光。1800年,英国物理学家F. W. 赫胥尔从热的观点来研究各种色光时,发现了红外线。他在研究各种色光的热量时,有意地把暗室的唯一的窗户用暗板堵住,并在板上开了一个矩形孔,孔内装一个分光棱镜。当太阳光通过棱镜时,便被分解为彩色光带,并用温度计去测量光带中不同颜色所含的热量。为了与环境温度进行比较,赫胥尔用在彩色光带附近放几支作为比较用的温度计来测定周围环境温度。试验中,他偶然发现一个奇怪的现象:放在光带红光外的一支温度计,比室内其他温度的批示数值高。经过反复试验,这个所谓热量最多的高温区,总是位于光带最边缘处红光的外面。于是他宣布太阳发出的辐射中除可见光线外,还有一种人眼看不见的“热线”,这种看不见的“热线”位于红色光外侧,叫做红外线。红外线是一种电磁波,具有与无线电波及可见光一样的本质,红外线的发现是人类对自然认识的一次飞跃,对研究、利用和发展红外技术领域开辟了一条全新的广阔道路。
红外线的波长在0.76~100μm 之间,按波长的范围可分为近红外、中红外、远红外、极远红外四类,它在电磁波连续频谱中的位置是处于无线电波与可见光之间的区域。红外线辐射是自然界存在的一种最为广泛的电磁波辐射,它是基于任何物体在常规环境下都会产生自身的分子和原子无规则的运动,并不停地辐射出热红外能量,分子和原子的运动愈剧烈,辐射的能量愈大,反之,辐射的能量愈小。
温度在绝对零度以上的物体,都会因自身的分子运动而辐射出红外线。通过红外探测器将物体辐射的功率信号转换成电信号后,成像装置的输出信号就可以完全一一对应地模拟扫描物体表面温度的空间分布,经电子系统处理,传至显示屏上,得到与物体表面热分布相应的热像图。运用这一方法,便能实现对目标进行远距离热状态图像成像和测温并进行分析判断。

1、红外测温仪的种类
红外测温仪器主要有3 种类型:红外热像仪、红外热电视、红外测温仪(点温仪)。60 年代我国研制成功
第一台红外测温仪,1990 年以后又陆续生产小目标、远距离、适合电业生产特点的测温仪器,如西光IRT
-1200D 型、HCW-Ⅲ型、HCW-Ⅴ型;YHCW-9400 型;WHD4015 型(双瞄准,目标D 40mm,可达
15 m)、WFHX330 型(光学瞄准,目标D 50 mm,可达30 m)。美国生产的PM-20、30、40、50、
HAS-201 测温仪;瑞典AGA 公司TPT20、30、40、50 等也有较广泛的应用。DL-500 E可以应用于110~500
kV 变电设备上,图像清晰,温度准确。红外热像仪,主要有日本TVS-2000、TVS-100,美国PM-250,
瑞典AGA- THV510、550、570。近期,国产红外热像仪在昆明研制成功,实现了国产化。

2、红外测温仪工作原理
了解红外测温仪的工作原理、技术指标、环境工作条件及操作和维修等是用户正确地选择和使用红外测温仪的基础。红外测温仪由光学系统、光电探测器、信号放大器及信号处理、显示输出等部分组成。光学系统汇集其视场内的目标红外辐射能量,视场的大小由测温仪的光学零件以及位置决定。红外能量聚焦在光电探测仪上并转变为相应的电信号。该信号经过放大器和信号处理电路按照仪器内部的算法和目标发射率校正后转变为被测目标的温度值。除此之外,还应考虑目标和测温仪所在的环境条件,如温度、气氛、污染和干扰等因素对性能指标的影响及修正方法。

一切温度高于绝对零度的物体都在不停地向周围空间发出红外辐射能量。物体的红外辐射能量的大小及其按波长的分布——与它的表面温度有着十分密切的关系。因此,通过对物体自身辐射的红外能量的测量,便能准确地测定它的表面温度,这就是红外辐射测温所依据的客观基础。

黑体辐射定律:黑体是一种理想化的辐射体,它吸收所有波长的辐射能量,没有能量的反射和透过,其表面的发射率为1。应该指出,自然界中并不存在真正的黑体,但是为了弄清和获得红外辐射分布规律,在理论研究中必须选择合适的模型,这就是普朗克提出的体腔辐射的量子化振子模型,从而导出了普朗克黑体辐射的定律,即以波长表示的黑体光谱辐射度,这是一切红外辐射理论的出发点,故称黑体辐射定律。

物体发射率对辐射测温的影响:自然界中存在的实际物体,几乎都不是黑体。所有实际物体的辐射量除依赖于辐射波长及物体的温度之外,还与构成物体的材料种类、制备方法、热过程以及表面状态和环境条件等因素有关。因此,为使黑体辐射定律适用于所有实际物体,必须引入一个与材料性质及表面状态有关的比例系数,即发射率。该系数表示实际物体的热辐射与黑体辐射的接近程度,其值在零和小于1 的数值之间。根据辐射定律,只要知道了材料的发射率,就知道了任何物体的红外辐射特性。

影响发射率的主要因纱在:材料种类、表面粗糙度、理化结构和材料厚度等。当用红外辐射测温仪测量目标的温度时首先要测量出目标在其波段范围内的红外辐射量,然后由测温仪计算出被测目标的温度。单色测温仪与波段内的辐射量成比例;双色测温仪与两个波段的辐射量之比成比例。

红外系统:红外测温仪由光学系统、光电探测器、信号放大器及信号处理、显示输出等部分组成。光学系统汇聚其视场内的目标红外辐射能量,视场的大小由测温仪的光学零件及其位置确定。红外能量聚焦在光电探测器上并转变为相应的电信号。该信号经过放大器和信号处理电路,并按照仪器内疗的算法和目标发射率校正后转变为被测目标的温度值。

3、红外测温仪性能
红外测温仪是通过接收目标物体发射、反射和传导的能量来测量其表面温度。测温仪内的探测元件将采集的能量信息输送到微处理器中进行处理,然后转换成温度读数显示。在带激光瞄准器的型号中,激光瞄准器只做瞄准使用。其性能说明如表1。
-----------------------------------------------------------------------------------------------
测温范围    -32℃--400℃        显示分辩率           0.1℃(<199.1℃时)
精度        23 ℃时±1%         工作环境温度范围     0--50 ℃
重复性      23 ℃时±1%         相对湿度             30℃时10—95%
响应时间     500ms              电源                 9V
响应光谱    7 -18micron         尺寸                 137 × 41 × 196mm
最大值显示    Have              重量                 270g
发射率         0.95             Preset               防水根据消防部队要求特殊制作
-----------------------------------------------------------------------------------------------
表1 红外测温仪性能

为了获得精确的温度读数,测温仪与测试目标之间的距离必须在合适的范围之内,所谓“光点尺寸”(spot size)就是测温仪测量点的面积。您距离目标越远,光点尺寸就越大。右图所示为距离与光点尺寸的比率,或称D:S。在激光瞄准器型测温仪上,激光点在目标中心的上方,有12mm(0.47 英寸)的偏置距离。

测量距离与光点尺寸
在定测量距离时,应确保目标直径等于或大于受测的光点尺寸。右图所标示的“1 号物体”(object 1 )
与测量仪之间的距离正,因为目标比被测光点尺寸略大一些。而“2 号物体”距离太远,因为目标小于受
测的光点尺寸,即测温仪同在测量背景物体,从而降低了读数的精确性。

4、红外测温仪正确选择
选择红外测温仪可分为3 个方面:
(1)性能指标方面,如温度范围、光斑尺寸、工作波长、测量精度、窗口、显示和输出、响应时间、保护附件等;
(2)环境和工作条件方面,如环境温度、窗口、显示和输出、保护附件等;
(3)其他选择方面,如使用方便、维修和校准性能以及价格等,也对测温仪的选择产生一定的影响。

随着技术和不断发展,红外测温仪最佳设计和新进展为用户提供了各种功能和多用途的仪器,扩大了选择余地。其他选择方面,如使用方便、维修和校准性能以及价格等。在选择测温仪型号时应首先确定测量要求,如被测目标温度,被测目标大小,测量距离,被测目标材料,目标所处环境,响应速度,测量精度,用便携式还是在线式等等;在现有各种型号的测温仪对比中,选出能够满足上述要求的仪器型号;在诸多能够满足上述要求的型号中选择出在性能、功能和价格方面的最佳搭配。

4.1 确定测温范围
确定测温范围:测温范围是测温仪最重要的一个性能指标。如Raytek(雷泰)产品覆盖范围为-50℃-+3000℃,但这不能由一种型号的红外测温仪来完成。每种型号的测温仪都有自己特定的测温范围。因此,用户的被测温度范围一定要考虑准确、周全,既不要过窄,也不要过宽。根据黑体辐射定律,在光谱的短波段由温度引起的辐射能量的变化将超过由发射率误差所引起的辐射能量的变化,因此,测温时应尽量选用短波较好。一般来说,测温范围越窄,监控温度的输出信号分辨率越高,精度可*性容易解决。测温范围过宽,会降低测温精度。例如,如果被测目标温度为1000 摄氏度,首先确定在线式还是便携式,如果是便携式。满足这一温度的型号很多,如3iLR3,3i2M,3i1M。如果测量精度是主要的,最好选用2M 或1M 型号的,因为如果选用3iLR 型,其测温范围很宽,则高温测量性能便差一些;如果用户除测量1000摄氏度的目标外,还要照顾低温目标,那只好选择3iLR3。

4.2 确定目标尺寸
红外测温仪根据原理可分为单色测温仪和双色测温仪(辐射比色测温仪)。对于单色测温仪,在进行测温时,被测目标面积应充满测温仪视场。建议被测目标尺寸超过视场大小的50%为好。如果目标尺寸小于视场,背景辐射能量就会进入测温仪的视声符支干扰测温读数,造成误差。相反,如果目标大于测温仪的视场,测温仪就不会受到测量区域外面的背景影响。对于比色测温仪,其温度是由两个独立的波长带内辐射能量的比值来确定的。因此当被测目标很小,不充满视场,测量通路上存在烟雾、尘埃、阻挡,对辐射能量有衰减时,都不对测量结果产生重大影响。对于细小而又处于运动或震动之中的目标,比色测温仪是最佳选择。这是由于光线直径小,有柔性,可以在弯曲、阻挡和折叠的通道上传输光辐射能量。

对于Raytek(雷泰)双色测温仪,其温度是由两个独立的波长带内辐射能量的比值来确定的。因此当被测目标很小,没有充满现场,测量通路上存在烟雾、尘埃、阻挡对辐射能量有衰减时,都不会对测量结果产生影响。甚至在能量衰减了95%的情况下,仍能保证要求的测温精度。对于目标细小,又处于运动或振动之中的目标;有时在视场内运动,或可能部分移出视场的目标,在此条件下,使用双色测温仪是最佳选择。如果测温仪和目标之间不可能直接瞄准,测量通道弯曲、狭小、受阻等情况下,双色光纤测温仪是最佳选择。这是由于其直径小,有柔性,可以在弯曲、阻挡和折叠的通道上传输光辐射能量,因此可以测量难以接近、条件恶劣或*近电磁场的目标。

4.3 确定距离系数(光学分辨率)
距离系数由D:S 之比确定,即测温仪探头到目标之间的距离D 与被测目标直径之比。如果测温仪由于环境条件限制必须安装在远离目标之处,而又要测量小的目标,就应选择高光学分辨率的测温仪。光学分辨率越高,即增大D:S 比值,测温仪的成本也越高。Raytek 红外测温仪D:S 的范围从2:1(低距离系数)到高于300:1(高距离系数)。如果测温仪远离目标,而目标又小,就应选择高距离系数的测温仪。对于固定焦距的测温仪,在光学系统焦点处为光斑最小位置,近于和远于焦点位置光斑都会增大。存在两个距离系数。因此,为了能在接近和远离焦点的距离上准确测温,被测目标尺寸应大于焦点处光斑尺寸,变焦测温仪有一个最小焦点位置,可根据到目标的距离进行调节。增大D:S,接收的能量就减少,如不增大接收口径,距离系数D:S 很难做大,这就要增加仪器成本。

4.4 确定波长范围
目标材料的发射率和表面特性决定测温仪的光谱相应波长对于高反射率合金材料,有低的或变化的发射率。在高温区,测量金属材料的最佳波长是近红外,可选用0.8~1.0μm。其他温区可选用1.6μm,2.2μm 和3.9μm。由于有些材料在一定波长上是透明的,红外能量会穿透这些材料,对这种材料应选择特殊的波长。如测量玻璃内部温度选用1.0μm,2.2μm 和3.9μm(被测玻璃要很厚,否则会透过)波长;测玻璃表面温度选用5.0μm;测低温区选用8~14μm 为宜。如测量聚乙烯塑料薄膜选用3.43μm,聚酯类选用4.3μm 或7.9μm,厚度超过0.4mm 的选用8-14μm。如测火焰中的CO 用窄带4.64μm,测火焰中的NO2 用4.47μm。

4.5 确定响应时间
响应时间表示红外测温仪对被测温度变化的反应速度,定义为到达最后读数的95%能量所需要时间,它与光电探测器、信号处理电路及显示系统的时间常数有关。Raytek(雷泰)新型红外测温仪响应时间可达1ms。这要比接触式测温方法快得多。如果目标的运动速度很快或测量快速加热的目标时,要选用快速响应红外测温仪,否则达不到足够的信号响应,会降低测量精度。然而,并不是所有应用都要求快速响应的红外测温仪。对于静止的或目标热过程存在热惯性时,测温仪的响应时间就可以放宽要求了。因此,红外测温仪响应时间的选择要和被测目标的情况相适应。确定响应时间,主要根据目标的运动速度和目标的温度变化速度。对于静止的目标或目标参在热惯性,或现有控制设备的速度受到限制,测温仪的响应时间就可以放宽要求了。

4.6 信号处理功能
鉴于离散过程(如零件生产)和连续过程不同,所以要求红外测温仪具有多信号处理功能(如峰值保持、谷值保持、平均值)可供选用,如测温传送带上的瓶子时,就要用峰值保持,其温度的输出信号传送至控制器内。否则测温仪读出瓶子之间的较低的温度值。若用峰值保持,设置测温仪响应时间稍长于瓶子之间的时间间隔,这样至少有一个瓶子总是处于测量之中。

4.7 环境条件考虑
测温仪所处的环境条件对测量结果有很大影响,应予考虑并适当解决,否则会影响测温精度甚至引起损坏。当环境温度高,存在灰尘、烟雾和蒸汽的条件下,可选用厂商提供的保护套、水冷却、空气冷却系统、空气吹扫器等附件。这些附件可有效地解决环境影响并保护测温仪,实现准确测温。在确定附件时,应尽可能要求标准化服务,以降低安装成本。当在噪声、电磁场、震动或难以接近环境条件下,或其他恶劣条件下,烟雾、灰尘或其他颗粒降低测量能量信信号时,光纤双色测温仪是最佳选择。比色测温仪是最佳选择。在噪声、电磁场、震动和难以接近的环境条件下,或其他恶劣条件时,宜选择光线比色测温仪。在密封的或危险的材料应用中(如容器或真空箱),测温仪通过窗口进行观测。材料必须有足够的强度并能通过所用测温仪的工作波长范围。还要确定操作工是否也需要通过窗口进行观察,因此要选择合适的安装位置和窗口材料,避免相互影响。在低温测量应用中,通常用Ge 或Si 材料作为窗口,不透可见光,人眼不能通过窗口观察目标。如操作员需要通过窗口目标,应采用既透红外辐射又透过可见光的光学材料,如应采用既透红外辐射又透过可见光的光学材料,如ZnSe 或BaF2 等作为窗口材料。

当测温仪工作环境中存在易燃气体时,可选用本征安全型红外测温仪,从而在一定浓度的易燃气体环境中进行安全测量和监视。在环境条件恶劣复杂的情况下,可以选择测温头和显示器分开的系统,以便于安装和配置。可选择与现行控制设备相匹配的信号输出形式。

4.8 红外辐射测温仪的标定
红外测温仪必须经过标定才能使它正确地显示出被测目标的温度。如果所用的测温仪在使用中出现测温超差,则需退回厂家或维修中心重新标定。
1楼
这东西想着是那么回事,真正做一下还有点难度,软件设计的难点也是重点是温度与热电势间非线性关系的线性化标度变换算法和关于传感器温度数据噪声干扰的滤波算法。正在思考中......

电脑版 Page created in 0.4688 seconds width 3 queries.